Manne.	ass: Date	e: ID: C
--------	-----------	----------

Linear Motion

Problem

- 1. How much time does a car with an acceleration of 2 m/s² take to go from 20 m/s to 28 m/s?
- 2. A skateboarder starting from rest accelerates down a ramp at 1 m/s² for 4 s. What is the final speed of the skateboarder?
- 3. Starting from rest, a car undergoes a constant acceleration of 3 m/s². How far will the car travel in the first second?
- 4. A crate falls from an airplane flying horizontally at an altitude of 1140 m. Neglecting air drag, how long will the crate take to strike the ground?
- 5. What vertical distance can a person with a 0.9 s hang time jump?
- 6. What speed must you toss a ball straight up so that it takes 2 s to return to you?
- 7. You toss a ball at 10 m/s straight upward. How much time will the ball take to reach the top of its path?
- 8. A stone is dropped from a cliff. After it has fallen 20 m, what is the stone's velocity?
- 9. A bicycle travels 20 km in 30 minutes. What is its average speed?
- 10. A pear falls from a tree and 1 second later hits the ground. How fast is the pear falling when it hits the ground?
- 11. What is the average acceleration of a car that goes from rest to 58 km/h in 7 seconds?
- 12. A jet on an aircraft carrier can be launched from 0 to 46 m/s in 2 seconds. What is the acceleration of the jet?
- 13. What is the hang time of a person who can jump a vertical distance of 0.8 m?
- 14. What is the average speed of a cheetah that runs 93 m in 4 seconds?
- 15. If a projectile fired beneath the water, straight up, breaks through the surface at a speed of 12 m/s, to what height above the water will it ascend?

Linear Motion Answer Section

PROBLEM

1.	ANS: 4 s							
2.	DIF: ANS: 4 m/s	3	REF:	p. 15, p. 16	OBJ:	2.4	STO:	Ph.1.c
3.	DIF: ANS: 1.5 m	3	REF:	p. 15, p. 16	OBJ:	2.4	STO:	Ph.1.c
4.	DIF: ANS: 15.1 s	3	REF:	p. 15, p. 16	OBJ:	2.4	STO:	Ph.1.c
5.	DIF: ANS: 1 m	3	REF:	p. 22	OBJ:	2.7	STO:	Ph.1.i
6.	DIF: ANS: 10 m/s	3	REF:	p. 19, p. 20	OBJ:	2.6	STO:	Ph.1.a, Ph.2.c
7.	DIF: ANS: 1 s	3	REF:	p. 18	OBJ:	2.6	STO:	Ph.1.a, Ph.2.c
8.	DIF: ANS: 20 m/s	3	REF:	p. 18	OBJ:	2.6	STO:	Ph.1.a, Ph.2.c
9.	DIF: ANS: 40 km/	3 hr	REF:	p. 20, p. 21	OBJ:	2.6	STO:	Ph.1.a, Ph.2.c
10.	DIF: ANS: 10 m/s	2	REF:	p. 11, p. 12	OBJ:	2.2	STO:	Ph.1.a, Ph.1.b
	DIF:	3	REF:	p. 18	OBJ:	2.6	STO:	Ph.1.a, Ph.2.c

11.	ANS: 8.3 km	/h·s						
12.	DIF: ANS: 23 m/s		REF:	p. 16	OBJ:	2.4	STO:	Ph.1.c
13.	DIF: ANS: 0.8 s	2	REF:	p. 15, p. 16	OBJ:	2.4	STO:	Ph.1.c
14.	DIF: ANS: 23.3 m		REF:	p. 22	OBJ:	2.7	STO:	Ph.1.i
15.	DIF: ANS: 7.2 m	2	REF:	p. 11, p. 12	OBJ:	2.2	STO:	Ph.1.a, Ph.1.b
	DIF:	3	REF:	p. 20, p. 21	OBJ:	2.6	STO:	Ph.1.a, Ph.2.c