Name: \qquad Class: \qquad Date: \qquad

Linear Motion

Problem

1. How much time does a car with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ take to go from $20 \mathrm{~m} / \mathrm{s}$ to $28 \mathrm{~m} / \mathrm{s}$?
2. A skateboarder starting from rest accelerates down a ramp at $1 \mathrm{~m} / \mathrm{s}^{2}$ for 4 s . What is the final speed of the skateboarder?
3. Starting from rest, a car undergoes a constant acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$. How far will the car travel in the first second?
4. A crate falls from an airplane flying horizontally at an altitude of 1140 m . Neglecting air drag, how long will the crate take to strike the ground?
5. What vertical distance can a person with a 0.9 s hang time jump?
6. What speed must you toss a ball straight up so that it takes 2 s to return to you?
7. You toss a ball at $10 \mathrm{~m} / \mathrm{s}$ straight upward. How much time will the ball take to reach the top of its path?
8. A stone is dropped from a cliff. After it has fallen 20 m , what is the stone's velocity?
9. A bicycle travels 20 km in 30 minutes. What is its average speed?
10. A pear falls from a tree and 1 second later hits the ground. How fast is the pear falling when it hits the ground?
11. What is the average acceleration of a car that goes from rest to $58 \mathrm{~km} / \mathrm{h}$ in 7 seconds?
12. A jet on an aircraft carrier can be launched from 0 to $46 \mathrm{~m} / \mathrm{s}$ in 2 seconds. What is the acceleration of the jet?
13. What is the hang time of a person who can jump a vertical distance of 0.8 m ?
14. What is the average speed of a cheetah that runs 93 m in 4 seconds?
15. If a projectile fired beneath the water, straight up, breaks through the surface at a speed of $12 \mathrm{~m} / \mathrm{s}$, to what height above the water will it ascend?

Linear Motion Answer Section

PROBLEM

1. ANS:

4 s
DIF: 3
REF: p. 15, p. 16 OBJ: 2.4
STO: Ph.1.c
2. ANS:

4 m/s

DIF: 3
REF: p. 15, p. 16 OBJ: 2.4
STO: Ph.1.c
3. ANS:
1.5 m

DIF: 3
REF: p. 15, p. 16
OBJ: 2.4
STO: Ph.1.c
4. ANS:
15.1 s

DIF: 3
5. ANS:

1 m

DIF: 3
6. ANS:
$10 \mathrm{~m} / \mathrm{s}$
DIF: 3
7. ANS:

1 s
DIF: 3
REF
p. 18

OBJ: 2.6
STO: Ph.1.a, Ph.2.c
8. ANS:
$20 \mathrm{~m} / \mathrm{s}$

DIF: 3
9. ANS:
$40 \mathrm{~km} / \mathrm{hr}$

DIF: 2
10. ANS:
$10 \mathrm{~m} / \mathrm{s}$

DIF: 3

REF: p. 18
OBJ: 2.6
STO: Ph.1.a, Ph.2.c

REF: p.11,p. 12 OBJ: 2.2
STO: Ph.1.a, Ph.1.b

STO: Ph.1.a, Ph.2.c
11. ANS:
$8.3 \mathrm{~km} / \mathrm{h} \cdot \mathrm{s}$

DIF: 2
12. ANS:
$23 \mathrm{~m} / \mathrm{s}$
DIF: 2
14. ANS:
$23.3 \mathrm{~m} / \mathrm{s}$
DIF: 2
15. ANS:
7.2 m

DIF: 3

REF: p. 15, p. 16 OBJ: 2.4
REF: p. 22
OBJ: 2.7
STO: Ph.1.i

REF: p. 20, p. 21 OBJ: 2.6
STO: Ph.1.c
REF: p. 16 OBJ: 2.4

REF: p. 11, p. 12 OBJ: 2.2
STO: Ph.1.a, Ph.1.b

STO: Ph.1.a, Ph.2.c

