Extra Kinematics Equations Practice

These are all extra problems to practice your use of Kinematics Equations. Try the problems before you check out the hints and answers to make sure you really know how to do the problems. Use the equations below. Remember, identifying the equation is half the problem.

1. A ball is dropped off a cliff and takes 5.8 seconds to hit the ground. How high is the cliff?
2. A car accelerates from rest to $34 \mathrm{~m} / \mathrm{s}$ in just 12 seconds. What is its acceleration?
3. A rocket shoots up 123 meters.
a. What is its initial velocity?
b. How long is it ascending?
4. A race car can accelerate at $8.9 \mathrm{~m} / \mathrm{s}^{2}$; if the car starts from $10 \mathrm{~m} / \mathrm{s}$, after 2.1 seconds how fast is it going?
5. A driver is traveling at $10.9 \mathrm{~m} / \mathrm{s}$ and has a reaction time of 0.3 seconds.
a. If the driver has to slam on his brakes, how far does the car travel before he even slams on his brakes?
b. If the driver can decelerate at $3.8 \mathrm{~m} / \mathrm{s}^{2}$, how far will he travel before he comes to a stop?
c. How far does the car travel in total before stopping?
6. If you drop something from rest off a 10.3 m high building, how long will it take to hit the ground?
7. A runner can travel 400 m in 5.2 minutes. What is their average velocity?
8. A jet plane takes 217 meters to get to a top speed of $239 \mathrm{~m} / \mathrm{s}$ from rest. What is its acceleration?
9. How long will it take a running horse to travel 45 m and attain a speed of $7 \mathrm{~m} / \mathrm{s}$ from rest?
10. A potato gun can launch a potato straight up with an initial velocity of $3.2 \mathrm{~m} / \mathrm{s}$. How high will the potato go?
11. A cross country skier can travel at $4.7 \mathrm{~m} / \mathrm{s}$. If they travel for 20 minutes, how far have they gone?
12. A penguin slides down a hill in the Arctic in 7 seconds. If the penguin started from rest and gains a speed of $1.9 \mathrm{~m} / \mathrm{s}$, what is its acceleration?
13. A bat is flying at $0.6 \mathrm{~m} / \mathrm{s}$ when it spots an appetizing insect. The bat accelerates at a rate of $1.2 \mathrm{~m} / \mathrm{s}^{2}$ for 1.9 seconds. How fast is the bat traveling at the time of that time?
14. A dogsled can travel as fast as $6.7 \mathrm{~m} / \mathrm{s}$ and can travel for hours without stopping. If the dogs travel 113 km , how long will it take them in hours?
15. A rubber bouncy ball is dropped off a balcony 19.6 meters off the ground. How long will it take it to fall?
16. A speedboat accelerates from rest to $14 \mathrm{~m} / \mathrm{s}$ in 0.4 seconds. What is its acceleration?
17. If you can make it from one end of a football field to the other (~ 100 meters) with an acceleration of 2.2 $\mathrm{m} / \mathrm{s}^{2}$, what would your top speed be if you started from rest?
18. a. How long would it take a penny to fall from the top of the Empire State Building if it is 381 m tall? b. Assuming the penny doesn't reach its terminal velocity, how fast, hypothetically, would it be moving when it hit the ground?
19. When an airplane takes off, it gains a speed of $250 \mathrm{~km} / \mathrm{hr}$ in about 244 meters. What is the planes acceleration?
20. The circumference of the Earth is roughly $40,233 \mathrm{~km}$. What is the speed of the Earth's rotation?
